nature communications

Article

https://doi.org/10.1038/s41467-022-33999-y

Molecular doping of nucleic acids into light emitting crystals driven by multisite-intermolecular interaction

Received: 5 May 2022

Accepted: 10 October 2022

Published online: 19 October 2022

Woo Hyuk Jung ^{1,4}, Jin Hyuk Park^{1,2,4}, Seokho Kim ^{1,4}, Chunzhi Cui^{1,3} & Dong June Ahn ^{1,2} ⊠

We reveal the fundamental understanding of molecular doping of DNAs into organic semiconducting tris (8-hydroxyquinoline) aluminum (Alg₃) crystals by varying types and numbers of purines and pyrimidines constituting DNA. Electrostatic, hydrogen bonding, and π - π stacking interactions between Alq₃ and DNAs are the major factors affecting the molecular doping. Longer DNAs induce a higher degree of doping due to electrostatic interactions between phosphate backbone and Alg₃. Among four bases, single thymine bases induce the multisite interactions of π - π stacking and hydrogen bonding with single Alg₃, occurring within a probability of 4.37%. In contrast, single adenine bases form multisite interactions, within lower probability (1.93%), with twoneighboring Alq₃. These multisite interactions facilitate the molecular doping into Alg₃ particles compared to cytosines or guanines only forming π - π stacking. Thus, photoluminescence and optical waveguide phenomena of crystals were successfully tailored. This discovery should deepen our fundamental understanding of incorporating DNAs into organic semiconducting crystals.

Since their inception as a typical genetic information carrier, nucleic acids have become a member of the material field and are widely used¹⁻⁴. The unique physical and chemical properties make nucleic acid-associated materials the focus of numerous studies. For example, a nucleic acid molecule is generally complexed with π -conjugated organic semiconductors and serves as (i) an efficient receptor element for recognizing biological/chemical targets⁵⁻⁷, (ii) a template for the assembly and polymerization of organic semiconductors⁸⁻¹⁰, (iii) a walking component in a light-driven artificial nanomachine^{11,12}, (iv) a wide-bandgap material in organic light-emitting diodes enhancing their luminescence efficiency^{2,13,14}, (v) a molecular gadget for tuning organic semiconductor crystals bio-active when properly hybridized¹⁵, and (vi) a biological moiety of organic hybrid crystals for remote sensing via optical waveguide effects¹⁶.

Hybrid assemblies have become important in the field of self-assembly 17,18 . Binary or ternary hybrid assemblies have been prepared through molecular doping between organic semiconducting components 19 , involving noncovalent intermolecular interactions, such as van der Waals force, π - π stacking, and hydrogen bonding $^{20-22}$. The forms of hybrid assemblies can be classified into hetero structures 23,24 and uniform 25,26 or gradient-doped 27 structures. However, deoxyribonucleic acids (DNAs) doped into light-emitting organic crystals exhibit distinctly different structures of molecular doping that has been unseen in conventional hybrid assemblies 3,15 . To date, studies have focused on the application of DNA-hybrid assemblies; however, little attention has been paid to how these nucleic acids interface with organic components at the molecular level. A fundamental understanding of the intermolecular interactions between nucleic acids and

¹Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea. ²KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea. ³Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China. ⁴These authors contributed equally: Woo Hyuk Jung, Jin Hyuk Park, Seokho Kim. —e-mail: ahn@korea.ac.kr